# **Constitutive Convolution and Graph Theoretical** Representations of Thermodynamic Processes: Thermal Conduction

A. D. Irving\*

Rutherford Appleton Laboratory, Oxford, Oxon OX11 0QX, England, United Kingdom S. J. M. Dudek†

The University of Newcastle, Newcastle Upon Tyne NE1 7RU, England, United Kingdom T. Dewson‡

> University of Bristol, Bristol BS8 1TW, England, United Kingdom and

> > G. Warren§

British Gas Plc., Killingworth, Northumberland, England, United Kingdom

It is possible to represent thermodynamic transport processes as either a superposition of constitutive convolution equations in a local region or as a directed graph network between connected regions of the system. Both the local constitutive convolution and directed graph network representations are based on response functions. These response functions for the local constitutive and the Peusner-directed graph network representations can be estimated directly from time series data of the physical observables under general stochastic boundary conditions. The response functions can be used to predict the performance of the materials under a range of external conditions. Both of the representations accurately characterize the future heat flux behavior. However, the main objective of the present work is to determine if the two representations provide physically meaningful and consistent transport coefficient values. The findings of the analyses indicate that only the local constitutive equations yielded the correct values for the physical properties of the materials under test. The nonlinear temporal form of the local constitutive representation is given and then used to estimate the linear and nonlinear thermal conductivity for a range of samples.

|                                | Nomenclature                                                                                                                                        | $J_2(t)$                                             | = heat flux at surface (2)                                                                                                                                                                                            |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $F_i(t) \\ H_{J_1J_2}(t)$      | <ul><li>general thermodynamic force</li><li>linear impulse response</li></ul>                                                                       |                                                      | of a conducting slab of material                                                                                                                                                                                      |
| >54                            | between $J_2(t)$ and $J_1(t)$ in the Peusner-directed graph                                                                                         | $\langle J_2(t-\tau_1)J_1(t)\rangle$                 | = time-series cross moments<br>between $J_2(t)$ and $J_1(t)$                                                                                                                                                          |
| 11 (A)                         | representation                                                                                                                                      | $\langle J_2(t-\tau_1)J_2(t-\sigma_1)\rangle$        | = time-series automoments<br>between $J_2(t)$ and $J_2(t)$                                                                                                                                                            |
| $H_{J_1 \nabla T_2}(t)$        | = linear impulse response<br>between $\nabla T_2(t)$ and $J_1(t)$ in the<br>Peusner-directed graph                                                  | $\langle J_2(t-\tau_1)\nabla T_1(t)\rangle$          | = time-series cross moments<br>between $J_2(t)$ and $\nabla T_1(t)$                                                                                                                                                   |
| <b>TT</b> (A)                  | representation                                                                                                                                      | $\langle J_2(t-\tau_1)\nabla T_2(t-\sigma_1)\rangle$ | = time-series automoments                                                                                                                                                                                             |
| $H_{ abla T_1 J_2}(t)$         | = linear impulse response<br>between $J_2(t)$ and $\nabla T_1(t)$ in the<br>Peusner-directed graph                                                  | $L^*_{ijk}$                                          | between $J_2(t)$ and $\nabla T_2(t)$<br>= steady-state second-order<br>transport coefficient,                                                                                                                         |
| $H_{\nabla T_1 \nabla T_2}(t)$ | representation = linear impulse response between $\nabla T_2(t)$ and $\nabla T_1(t)$ in the Peusner-directed graph                                  | $L^*_{ik}$                                           | $(\partial J_k^2/\partial F_i\partial F_j) = \Sigma_{\sigma_1=0}^{\mu} \Sigma_{\sigma_2=0}^{\mu} L_{J_k F_i F_j}(\sigma_1, \sigma_2)$<br>= steady-state linear transport coefficient, $(\partial J_k/\partial F_i)$ = |
| J(t)                           | representation = local heat flux in the constitutive representation                                                                                 | $L_{J\nabla T}(t)$                                   | $\sum_{\sigma_1=0}^{\mu} L_{J_k F_i}(\sigma_1)$ = linear impulse response between $J(t)$ and $\nabla T(t)$ in the                                                                                                     |
| $J_k(t) \\ J_1(t)$             | <ul><li>general thermodynamic flux</li><li>heat flux at surface (1) of a</li></ul>                                                                  | <b>T</b> (1.1.)                                      | local constitutive representation                                                                                                                                                                                     |
|                                | conducting slab of material                                                                                                                         | $L_{J\nabla T\nabla T}(t_1, t_2)$                    | = second-order impulse response<br>between $J(t)$ and $\nabla T(t)$ in the<br>local constitutive<br>representation                                                                                                    |
| cepted for publication         | 24, 1994; revision received March 27, 1995; acon April 3, 1995. Copyright © 1995 by the authors. merican Institute of Aeronautics and Astronautics, | N                                                    | <ul> <li>order of truncation of the<br/>Volterra and Taylor series</li> </ul>                                                                                                                                         |
| Inc., with permission          | on.                                                                                                                                                 |                                                      | expansions                                                                                                                                                                                                            |

Inc., with permission. \*Senior Scientific Officer.

first-order steady-state thermal

conductivity determined using

representation,  $\sum_{\sigma_1=0}^{\mu} L_{J\nabla T}(\sigma_1)$ 

the local constitutive

<sup>†</sup>Senior Lecturer, Department of Building Science.

<sup>‡</sup>Scientific Officer, Department of Mathematics.

<sup>§</sup>Statistician.

| $	heta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = | second-order steady-state                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | thermal conductivity                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | determined using the local                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | constitutive representation                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | $\sum_{\sigma_1=0}^{\mu} \sum_{\sigma_2=0}^{\mu} L_{J abla T abla T}(\sigma_1, \sigma_2)$ |
| κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = | steady-state thermal                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | conductivity of a solid                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | material                                                                                  |
| $\kappa_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = | steady-state thermal                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | conductivity determined using                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | the local constitutive                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | representation, $\sum_{\sigma_1=0}^{\mu} L_{J\nabla T}(\sigma_1)$                         |
| $\kappa_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ | steady-state thermal conductivity determined using                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | the Peusner-directed graph                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | representation,                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | $\sum_{\sigma_1=0}^{\mu} H_{J_1 \nabla T_2}(\sigma_1)$                                    |
| $\kappa_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = | steady-state thermal                                                                      |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | conductivity determined by the                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | ratio of means method,                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | $\left  \sum_{t=1}^{N} \nabla T(t) / \sum_{t=1}^{N} J(t) \right $                         |
| Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = | mannoon of time believ data                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | points used in the statistical-                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | averaging process                                                                         |
| $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = | time taken for the system to                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | reach the three half-life decay                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | point after an impulse or step excitation                                                 |
| <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ |                                                                                           |
| $\sigma$ , $\sigma$ <sub>1</sub> , $\sigma$ <sub>2</sub> , $\tau$ , $\tau$ <sub>1</sub> , $\tau$ <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | present time, in units of time                                                            |
| $\psi_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                           |
| 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | using the Peusner-directed                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | graph representation,                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | $\sum_{\sigma_1=0}^{\mu} H_{J_1J_2}(\sigma_1)$                                            |
| <*>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = | statistical-averaging                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | operation                                                                                 |
| $\nabla T(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                           |
| <b>5</b> 7. (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | the constitutive representation                                                           |
| $\nabla T_1(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | (1) of a conducting slab of material                                                      |
| $\nabla T_2(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = | temperature gradient at surface                                                           |
| V 1 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | (2) of a conducting slab of                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | material                                                                                  |
| $\langle \nabla T_2(t-\tau_1)J_1(t)\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = | time-series cross moments                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | between $\nabla T_2(t)$ and $J_1(t)$                                                      |
| $\langle \nabla T_2(t-\tau_1)J_2(t-\sigma_1)\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = | time-series automoments                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | between $\nabla T_2(t)$ and $J_2(t)$                                                      |
| $\langle \nabla T_2(t-\tau_1)\nabla T_1(t)\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = | time-series cross moments                                                                 |
| /TT (4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | between $\nabla T_2(t)$ and $\nabla T_1(t)$                                               |
| $\langle \nabla T_2(t-\tau_1)\nabla T_2 \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = | time-series automoments<br>between $\nabla T_i(t)$ and $\nabla T_i(t)$                    |
| $ \begin{array}{c} \times (t - \sigma_1) \rangle \\ \langle \nabla T_2(t - \tau_1) \nabla T_2(t - \tau_2) \rangle \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | between $\nabla T_2(t)$ and $\nabla T_2(t)$ time-series third-order cross                 |
| $\begin{array}{c} \langle V I_2(t) I_1 \rangle V I_2(t) \\ \times J_1(t) \rangle \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | moments between $\nabla T_2(t)$ and                                                       |
| · · • I(•)/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | $J_1(t)$                                                                                  |
| $\langle \nabla T_2(t-\tau_1)\nabla T_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = | time-series third-order                                                                   |
| $\times (t - \tau_2) \nabla T_2(t - \sigma_1) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | automoments of $\nabla T_2(t)$                                                            |
| $\langle \nabla T_2(t-\tau_1)\nabla T_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = | time-series fourth-order                                                                  |
| $\times (t - \tau_2) \nabla T_2(t - \tau_2) \nabla T_2(t$ |   | automoments of $\nabla T_2(t)$                                                            |
| $\sigma_1 \nabla T_2(t - \sigma_2) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                           |
| $\langle \prod_{j=1}^m F_i(t-\tau_j) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = | general time-series cross                                                                 |
| $\times  J_k(t)\rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | moments between $F_i(t)$ and                                                              |
| $/\Pi^m = F(t - \tau)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | $J_k(t)$                                                                                  |
| $\langle \prod_{j=1}^{m} F_r(t-\tau_j) \times \prod_{i=1}^{n} F_s(t-\sigma_i) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | general time-series automoments between $F_r(t)$                                          |
| $\sim \mathbf{I}_{i=1} \mathbf{I}_{s} (\mathbf{i}  0_{i}) /$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | and $F_s(t)$                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                                                                           |

## Introduction

**R** EAL thermodynamic systems do not exist in a steadystate world; they respond to the continuously changing environment. To measure the thermal characteristics of real thermodynamic processes the appropriate analysis techniques need to be employed. It is possible to represent thermodynamic problems as either a supposition of local constitutive convolution equations in a local region of the solid or as a directed graph network between connected network regions within the solid. Both the local constitutive convolution and network representations are based on response functions that can, in principle, be used to estimate dynamic transport coefficients of the process. The purpose of this article is to determine if the thermal transport coefficients of the local constitutive and the graph theoretical representations are accurate, consistent, and physically meaningful for a wide range of solid materials.

This work uses novel time-series analysis techniques to determine the thermal characteristics for one-dimensional thermal conduction. An engineering hot box facility with a heat pipe to the external meteorological conditions was used to measure the linear one-dimensional thermal conductivity of a range of homogeneous solid materials. A series of experiments were performed under typical meteorological boundary conditions and the time-series data collected in those experiments was analyzed in the framework of the two representations. The truth model in the present work is the thermal transport coefficients obtained using the ratio of mean's method. Direct comparisons were made with the ratio of mean's thermal conductivity values and the thermal conductivities determined with the two representations. The moment hierarchy method used in the present work to estimate the response function values and the steady-state thermal conductivities is described in detail elsewhere. 1,2 The local constitutive representation is then extended to the mixed linear-nonlinear case. Time-series heat flux and temperature gradient data were analyzed to investigate the degree to which the thermal conduction process may be weakly nonlinear.

#### **Local Constitutive Representation**

If it is assumed that the thermodynamic fluxes  $[J_k(t)]$  depend on the set of thermodynamic forces  $[F_i(t)]$  then each of the thermodynamic fluxes can be written as a multidimensional function of the forces, with

$$J_k(t) = J_k(F_1, \ldots, F_A)$$
 (1)

This relationship can be defined as an ascending order of a multidimensional Taylor's series expansion<sup>3</sup> with

$$J_k(t) = \sum_i L_{ik}^* F_i(t) + \frac{1}{2!} \sum_i \sum_j L_{ijk}^* F_i(t) F_j(t) + \cdots$$
 (2)

where the steady-state transport coefficients are given by

$$L_{ik}^* = \left(\frac{\partial J_k}{\partial F_i}\right)_0$$
 and  $L_{ijk}^* = \left(\frac{\partial J_k^2}{\partial F_i \partial F_i}\right)_0$ 

In both the linear and the nonlinear cases the steady-state transport coefficients are difficult to determine experimentally. The steady-state transport coefficients do not provide any information about the dynamics of the process and their values cannot be derived from purely theoretical grounds. In the linear case, Eq. (2) reduces to the irreversible thermodynamic equations of Onsager.

Equally, the phenomena can be described by an expansion of functionals. If there is a unique solution to the Taylor series expansion then, formally at least, it is the inverse mapping. The emphasis of the inverse problem approach is to identify the form of relationship between the observables, and hence, establish the laws governing the process. For example,  $[J_k(t)]$ 

can be written as a discrete form of the Volterra functional expansion<sup>4</sup> with

$$J_{k}(t) = \sum_{n=1}^{N} \frac{1}{n!} \sum_{i_{1}=1}^{I} \cdots \sum_{i_{n}=i_{n-1}}^{I} \sum_{\sigma_{1}=0}^{\mu} \cdots \sum_{\sigma_{n}=0}^{n} L_{J_{k}F_{i_{1}}\cdots F_{i_{n}}}(\sigma_{1}, \ldots, \sigma_{n}) \prod_{j=1}^{n} F_{i_{j}}(t - \sigma_{j})$$
(3)

where N is the order of truncation of the system, where t denotes time, I is the number of forces, and  $\sigma_i$  denotes time delay with respect to t.

The kernel function values  $L_{J_kF_1n}(\sigma_1,\ldots,\sigma_n)$  characterize the behavior of  $[J_k(t)]$  in terms of the forces  $[F_1(t)]$ . Integrating each kernel function yields the linear and the nonlinear steady-state transport coefficients, <sup>1.2</sup> with

$$L_{J_k F_{i_1} \cdots F_{i_n}}^* = \sum_{\sigma_1 = 0}^{\mu} \cdots \sum_{\sigma_n = 0}^{\mu} L_{J_k F_{i_1} \cdots F_{i_n}} (\sigma_1, \dots, \sigma_n)$$
 (4)

For one-dimensional thermal conduction the local heat flux [J(t)] can be expressed as a function of the local temperature gradient  $[\nabla T(t) = F_1(t)]$ . If the thermal conduction process is assumed to be linear, then the relationship between the heat flux and temperature gradient can be expressed as the convolution<sup>5</sup>

$$J(t) = \sum_{\sigma_1=0}^{\mu} L_{J\nabla T}(\sigma_1) \nabla T(t - \sigma_1)$$
 (5)

The response function  $L_{I\nabla T}(\sigma_1)$  is related to the equilibrium thermal conductivity  $\kappa_1$  by

$$\kappa_1 = \sum_{\sigma_1=0}^{\mu} L_{J\nabla T}(\sigma_1) \tag{6}$$

As it stands, Eq. (5) is ill-posed, in the sense that there are too many unknown coefficients. This problem can be rectified if a number of independent equations equal to the number of unknown coefficients can be generated. Equation (5) is also usually ill-conditioned, because it has dependent and independent variables that are stochastic functions of time. By operating on Eq. (5) with the averaging operator  $\langle \nabla T(t-\tau_1)^* \rangle$  a tractable set of  $(\mu+1)$  equations with well-behaved coefficients is obtained that can be solved for the response function values. In this case the moment hierarchy is given by<sup>1,2</sup>

$$\langle \nabla T(t-\tau_j)J(t)\rangle = \sum_{\sigma_1=0}^{\mu} L_{J\nabla T}(\sigma_1)\langle \nabla T(t-\tau_j)\nabla T(t-\sigma_1)\rangle$$
(7)

where this multivariate moment hierarchy is solved by standard matrix methods.

The simultaneous form of the moment equations is more obvious when Eq. (7) is written in matrix form with

$$\begin{vmatrix} \langle \nabla T(t)J(t) \rangle & \vdots \\ \langle \nabla T(t-\mu)J(t) \rangle \end{vmatrix}$$

$$= \begin{vmatrix} \langle \nabla T(t)\nabla T(t) \rangle & \cdots & \langle \nabla T(t)\nabla T(t-\mu) \rangle \\ \vdots & \ddots & \vdots \\ \langle \nabla T(t-\mu)\nabla T(t) \rangle & \cdots & \langle \nabla T(t-\mu)\nabla T(t-\mu) \rangle \end{vmatrix}$$

$$\times \begin{vmatrix} L_{J\nabla T}(0) \\ \vdots \\ L_{J\nabla T}(\mu) \end{vmatrix}$$
(8)

where the cross- and automoments between the observed heat flux [J(t)] and the temperature gradient  $[\nabla T(t)]$  are defined as

$$\langle \nabla T(t-\tau_1)J(t)\rangle = \sum_{t=0}^{\Lambda} \nabla T(t-\tau_1)J(t)$$

and

$$\langle \nabla T(t-\tau_1) \nabla T(t-\sigma_1) \rangle = \sum_{t=0}^{\Lambda} \nabla T(t-\tau_1) \nabla T(t-\sigma_1)$$

respectively.

#### **Directed Graph Network Representation**

Recently, Peusner<sup>6-9</sup> has developed the thermostatic directed graph network formalism for the multiple thermal subsystem case. In that work the elements of the transfer matrices are assumed to be equal to the partial derivatives of the thermodynamic equations of state when equilibrium conditions prevail, with several thermodynamic variables being assumed to be held at constant values.

Peusner used elements of linear topology and graph theory to develop a directed graph network representation of thermostatic systems. That approach is in direct analogy to the network and graph theoretical methods developed for linear electrical circuits. Kirchhoff's law's are used to obtain a suitable, but not unique, set of equations to describe the thermostatic flows.

Peusner considers a variety of steady-state network forms, in particular, relating the thermodynamic force and flux at each point, with

$$\begin{vmatrix} J_1 \\ F_1 \end{vmatrix} = \begin{vmatrix} H_{J_1J_2} & H_{J_1F_2} \\ H_{F_1J_2} & H_{F_1F_2} \end{vmatrix} \begin{vmatrix} J_2 \\ F_2 \end{vmatrix}$$
 (9)

In the Peusner thermostatic network representation of a conducting slab of material both surfaces can simultaneously experience unsteady heat flux and temperature gradient conditions. The network equation for the heat flux at one surface  $[J_1(t)]$  can be related, by a superposition of convolution equations, to the temperature gradient  $[\nabla T_2(t)]$  and the local heat flux  $[J_2(t)]$  at the opposite boundary, with

$$\begin{vmatrix} J_1(t) \\ \nabla T_1(t) \end{vmatrix} = \begin{vmatrix} H_{J_1J_2}(\sigma_1) & H_{J_1\nabla T_2}(\sigma_1) \\ H_{\nabla T_1J_2}(\sigma_1) & H_{\nabla T_1\nabla T_2}(\sigma_1) \end{vmatrix} \begin{vmatrix} J_2(t-\sigma_1) \\ \nabla T_2(t-\sigma_1) \end{vmatrix}$$
(10)

The equation for the heat flux and temperature gradient are explicitly given by the superposition of two linear convolution terms with

$$J_{1}(t) = \sum_{\sigma_{1}=0}^{\mu} H_{J_{1}J_{2}}(\sigma_{1})J_{2}(t - \sigma_{1})$$

$$+ \sum_{\sigma_{1}=0}^{\mu} H_{J_{1}\nabla T_{2}}(\sigma_{1})\nabla T_{2}(t - \sigma_{1})$$
(11)

$$\nabla T_{1}(t) = \sum_{\sigma_{1}=0}^{\mu} H_{\nabla T_{1}J_{2}}(\sigma_{1})J_{2}(t-\sigma_{1})$$

$$+ \sum_{\sigma_{1}=0}^{\mu} H_{\nabla T_{1}\nabla T_{2}}(\sigma_{1})\nabla T_{2}(t-\sigma_{1})$$
(12)

The steady-state thermal conductivity  $\kappa_2$  and the heat flux gain  $\psi_2$  for the Peusner-directed graph network representation are given by

$$\kappa_2 = \sum_{\sigma_1=0}^{\mu} H_{J_1 \nabla T_2}(\sigma_1) \text{ and } \psi_2 = \sum_{\sigma_1=0}^{\mu} H_{J_1 J_2}(\sigma_1)$$
 (13)

where, theoretically,  $\psi_2 = 1.0$ .

The moment equations to be solved for the Peusner response function values are

$$\langle J_2(t-\tau_1)J_1(t)\rangle = \sum_{\sigma_1=0}^{\mu} H_{J_1J_2}(\sigma_1)\langle J_2(t-\tau_1)J_2(t-\sigma_1)\rangle$$

$$+ \sum_{\sigma_1=0}^{\mu} H_{J_1\nabla T_2}(\sigma_1)\langle J_2(t-\tau_1)\nabla T_2(t-\sigma_1)\rangle$$
(14)

$$\langle J_2(t-\tau_1)\nabla T_1(t)\rangle = \sum_{\sigma_1=0}^{\mu} H_{\nabla T_1J_2}(\sigma_1)\langle J_2(t-\tau_1)J_2(t-\sigma_1)\rangle$$

$$+ \sum_{\sigma_1=0}^{\mu} H_{\nabla T_1 \nabla T_2}(\sigma_1) \langle J_2(t-\tau_1) \nabla T_2(t-\sigma_1) \rangle$$
 (15)

$$\langle \nabla T_2(t-\tau_1)J_1(t)\rangle = \sum_{\sigma_1=0}^{\mu} H_{J_1J_2}(\sigma_1)\langle \nabla T_2(t-\tau_1)J_2(t-\sigma_1)\rangle$$

$$+ \sum_{\sigma_1=0}^{\mu} H_{J_1 \nabla T_2}(\sigma_1) \langle \nabla T_2(t-\tau_1) \nabla T_2(t-\sigma_1) \rangle$$
 (16)

$$\langle \nabla T_2(t - \tau_1) \nabla T_1(t) \rangle$$

$$= \sum_{\sigma_1=0}^{\mu} H_{\nabla T_1 J_2}(\sigma_1) \langle \nabla T_2(t - \tau_1) J_2(t - \sigma_1) \rangle$$

$$+ \sum_{\sigma_2=0}^{\mu} H_{\nabla T_1 \nabla T_2}(\sigma_1) \langle \nabla T_2(t - \tau_1) \nabla T_2(t - \sigma_1) \rangle$$
(17)

#### **Ratio of Means Method**

In addition to the two time-series representations given earlier, the thermal conductivity of the sample materials is estimated using the ratio of means method. In the ratio of means method steady-state conditions are assumed to prevail and the relationship between the local heat flux and the local temperature gradient will be given by the approximation

$$\sum_{t=1}^{\Lambda} J(t) \approx -\kappa_3 \sum_{t=1}^{\Lambda} \nabla T(t)$$
 (18)

where  $\Lambda$  is the number of time-series points used to estimate the mean values, and the conductivity from the ratio of means method is  $\kappa_3$ .

# Experimental Facility for Low Thermal Conductivity Solid Materials

The heat flux, temperature, and temperature gradients of sample materials were measured in a calibrated hot box arrangement. From these measurements the dynamic and thermal conductivity's response factors are estimated using each of the previous representations for the thermal process. The experimental arrangement shown in Fig. 1 was designed to measure the thermal conductivity of a range of material types.

Essentially, the rig consists of a copper heat pipe to a cold temperature bath that is controlled, and another copper heat pipe to atmospheric conditions that gives a damped stochastic heat flux at the surface of the sample under test. The cold bath is an enclosed copper heat exchanger that has cold water

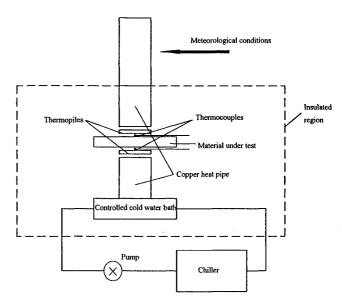



Fig. 1 Schematic diagram of the experimental arrangement.

pumped through it. The absolute temperatures are measured with platinum resistance thermometers and the heat fluxes are measured with thermopiles. The cooling of the water is achieved by using a commercial water chiller. The water is recirculated through the chiller.

The temperature and heat flux are measured at positions above and below the sample as shown in Fig. 1. The test section is surrounded by loose vermiculite insulation. The insulation is contained within a 500-mm<sup>2</sup> enclosure.

The readings were taken every 10 s over an 11-h period, the time interval for data collection was determined by the response time of the sensors used. During the test period 4000 sets of measurements are taken. Of these 4000 points, some 2000 are used to estimate the response function values of the process and the remaining 2000 points are used to compare with the values of the heat flux predicted using the estimated response function values.

#### Linear Analysis of the Thermal Conductivity Data

These conductivity values, estimated using the local constitutive and the Peusner-directed graph network representations, were compared with the ratio of means values. The estimated response function values obtained using the timeseries techniques were then to be used to provide a prediction of  $[J_p(t)]$ . This prediction was compared with the measured future values of  $[J_1(t)]$ . This comparison provides a sensitive measure of the quality of the characterization of the thermal transport process. The accuracy of the modeling ability was determined by the students t-test between actual heat flux time-series sequence  $[J_p(t)]$ .

In all cases the values of the test statistics for the differences between the measured  $[J_k(t)]$  and predicted heat flux  $[J_p(t)]$ , for both modeled and predicted data, lay well within the acceptance region of the univariate students *t*-test statistic. Thus, each of the representations accurately quantifies the observed behavior of the heat flux.

The ability to accurately characterize the observed behavior of the process is obviously important. However, the main objective of the present work is to determine if the two representations provide physically meaningful and consistent transport coefficient values. The values of the estimated one-dimensional thermal conductivity from sample material spanning three orders of magnitude are presented in Table 1. Each column contains the values from the analysis of a single sample of time-series data from a single sample of the material. The

|                                       | Local constitutive Direct |                        | aph network          | Ratio of means value   |
|---------------------------------------|---------------------------|------------------------|----------------------|------------------------|
| Sample material                       | κ <sub>1</sub> , W/m K    | κ <sub>2</sub> , W/m K | $\psi_2$ , flux gain | κ <sub>3</sub> , W/m K |
| Stainless steel                       | $12.2 \pm 0.36$           | $12.2 \pm 0.36$        | $0.0013 \pm 0.0004$  | $12.2 \pm 0.20$        |
| Glass                                 | $0.827 \pm 0.025$         | $0.078 \pm 0.0025$     | $1.007 \pm 0.03$     | $0.866 \pm 0.040$      |
| Glass fiber rein-<br>forced polyester | $0.191 \pm 0.006$         | $0.056 \pm 0.0017$     | $0.356 \pm 0.011$    | $0.230 \pm 0.020$      |
| Cork                                  | $0.050 \pm 0.0015$        | $0.047 \pm 0.0015$     | $0.951 \pm 0.03$     | $0.049 \pm 0.003$      |

Table 1 Estimated thermal conductivities of a range of materials

Table 2 Estimated thermal conductivity of four different samples of glass

| Glass<br>sample | Local constitutive | Directed gr            | Directed graph network |                        |
|-----------------|--------------------|------------------------|------------------------|------------------------|
| no.             | $\kappa_1$ , W/m K | κ <sub>2</sub> , W/m K | $\psi_2$ , flux gain   | κ <sub>3</sub> , W/m K |
| 1               | $0.827 \pm 0.025$  | $0.064 \pm 0.002$      | $0.949 \pm 0.03$       | $0.866 \pm 0.040$      |
| 2               | $0.611 \pm 0.018$  | $0.783 \pm 0.022$      | $-0.324 \pm 0.011$     | $0.641 \pm 0.040$      |
| 3               | $0.653 \pm 0.019$  | $0.668 \pm 0.019$      | $0.002 \pm 0.001$      | $0.654 \pm 0.040$      |
| 4               | $0.720 \pm 0.021$  | $0.122 \pm 0.004$      | $0.706 \pm 0.021$      | $0.740 \pm 0.040$      |

Table 3 Estimated thermal conductivity of four different samples of cork

| Cork<br>sample | Local constitutive | Directed graph network |                      | Ratio of means value   |
|----------------|--------------------|------------------------|----------------------|------------------------|
| no.            | $\kappa_1$ , W/m K | κ <sub>2</sub> , W/m K | $\psi_2$ , flux gain | κ <sub>3</sub> , W/m K |
| 1              | $0.050 \pm 0.0015$ | $0.047 \pm 0.0015$     | $0.950 \pm 0.100$    | $0.0499 \pm 0.0015$    |
| 2              | $0.050 \pm 0.0015$ | $0.039 \pm 0.0012$     | $0.382 \pm 0.050$    | $0.0502 \pm 0.0015$    |
| 3              | $0.050 \pm 0.0015$ | $0.044 \pm 0.0012$     | $0.135 \pm 0.040$    | $0.0504 \pm 0.0015$    |
| 4              | $0.050 \pm 0.0015$ | $0.007 \pm 0.0002$     | $1.218 \pm 0.040$    | $0.0502 \pm 0.0015$    |

fractional uncertainty on the thermal conduction estimated using the ratio of means method is equal

$$\Delta \kappa_3 / \kappa_3 \approx \sqrt{(\Delta J_k / J_k)^2 + [\Delta \nabla T(t) / \nabla T(t)]^2}$$
 (19)

The uncertainties on the thermal conductivity values estimated using the convoltuion equations can be determined by considering the expansion

$$[J_{k}(t) \pm \Delta J_{k}(t)] = \sum_{n=1}^{N} \frac{1}{n!} \sum_{i_{1}=1}^{I} \cdots \sum_{i_{n}=i_{n-1}}^{I} \sum_{\sigma_{1}=0}^{\mu}$$

$$\cdots \sum_{\sigma_{n}=0}^{\mu} [L_{J_{k}F_{i_{1}}\cdots F_{i_{n}}}(\sigma_{1}, \ldots, \sigma_{n})]$$

$$\pm \Delta L_{J_{k}F_{i_{1}}\cdots F_{i_{n}}}(\sigma_{1}, \ldots, \sigma_{n})]$$

$$\times \left[ \prod_{j=1}^{n} F_{i_{j}}(t - \sigma_{j}) \pm \prod_{j=1}^{n} \Delta F_{i_{j}}(t - \sigma_{j}) \right]$$
(20)

Remembering that  $F_{ij}(t) = \nabla T_{ij}(t)$  in this case, then for the linear approximation Eq. (20) reduces to

$$[J_{k}(t) \pm \Delta J_{k}(t)] = \sum_{i_{1}=1}^{I} \sum_{\sigma_{1}=0}^{\mu} [L_{J_{k}F_{i_{1}}}(\sigma_{1}) \pm \Delta L_{J_{k}F_{i_{1}}}(\sigma_{1})]$$

$$\times [\nabla T_{i_{1}}(t-\sigma_{1}) \pm \Delta \nabla T_{i_{1}}(t-\sigma_{1})]$$
(21)

Using the fact that1

$$\left(\frac{\partial J_k}{\partial F_i}\right) = \sum_{\sigma_1=0}^{\mu} L_{J_k F_i}(\sigma_1) = \kappa_{ik}$$

and ignoring second-order terms, then the uncertainty  $\Delta J_k(t)$  can be written as

$$\Delta J_{k}(t) = \sum_{i_{1}=1}^{I} \sum_{\sigma_{1}=0}^{\mu} \left[ \Delta \nabla T_{i_{1}}(t - \sigma_{1}) L_{J_{k}F_{i_{1}}}(\sigma_{1}) + \Delta L_{J_{k}F_{i_{1}}}(\sigma_{1}) \nabla T_{i_{1}}(t - \sigma_{1}) \right]$$
(22)

If it is assumed that the uncertainty on each experimentally measured time-series point is a constant equal to the calibration uncertainty, i.e.,  $\Delta J_k \approx \text{const}$  and  $\Delta \nabla T_{i_1} \approx \text{const}$ ; and as the temperature gradient is roughly constant in the present work, i.e.,  $\nabla T_{i_1}(t) \approx \langle \nabla T_{i_1}(t) \rangle$ , then the uncertainty on the integral of the estimated response function values will be approximately equal to

$$\frac{\Delta L_{J_k F_{i_1}}^*}{L_{J_k F_{i_1}}^*} \approx \sqrt{\left(\frac{\Delta J_k}{J_k}\right)^2 + \sum_{i_1=1}^I \left(\frac{\Delta \nabla T_{i_1}}{\nabla T_{i_1}}\right)^2}$$
 (23)

where the square root of the quadrature sum has been used instead of the simple arithmetic sum. However, in the Peusner case, this is a lower bound on the uncertainty because of the conditioning of the matrix. The calibration uncertainties are approximately  $(\Delta J_k/J_k) \approx 3\%$  and  $(\Delta \nabla T_{i_1}/\nabla T_{i_2}) \approx 1\%$ .

The values of the estimated one-dimensional thermal conductivity from four different samples of glass and cork are presented in Tables 2 and 3. Each column contains the values from the analysis of a single sample of 400 points of timeseries data from a single sample of the material. The first values in the first row of Tables 2 and 3 are the same as those presented in Table 1.

The values of the estimated one-dimensional thermal conductivity from four different samples of cork are presented in Table 3.

The thermal conductivity values estimated with the local constitutive representation agree with the ratio of means estimates within the experimental uncertainties. The thermal conductivity values estimated with the Peusner representation do not agree with the ratio of means estimates. In addition, the heat flux gain values estimated with the Peusner representation are not consistent and do not correspond to the theoretically expected value of 1.0. This suggests that, for one-dimensional thermal conduction, the Peusner matrix is not well conditioned, perhaps due to a linear dependency between the elements of the matrix.

It is clear that the local constitutive representation gives correct, accurate, and consistent values for the conductivities over the whole range of materials considered. In contrast, although the directed graph network representation does give some correct and accurate conductivities for some materials, it is neither consistent nor accurate for the one-dimensional thermal conductivity problem.

#### **Nonlinear Local Constitutive Relationships**

Consider representing a thermodynamic observable, e.g., a flux  $[J_k(t)]$  in terms of the local temperature gradient  $[F_k(t)]$ .  $[J_k(t)]$  can be represented as a multidimensional convolution expansion in terms of the thermodynamic force  $[F_k(t)]$ , which in discrete form is given by

$$J_{k}(t) = \sum_{n=1}^{N} \frac{1}{n!} \sum_{\sigma_{1}=0}^{\mu} \cdots \sum_{\sigma_{n}=0}^{\mu} L_{J_{k}F''}(\sigma_{1}, \ldots, \sigma_{n}) \prod_{i=1}^{n} F_{k}(t - \sigma_{i})$$
 (24)

where  $\sigma_i$  denotes time delay with respect to present time t. In the present work,  $[J_k(t)]$  is considered to be a mixed first-and second-order functional of the local  $[\nabla T(t)]$ , where the convolution relationship is given by

$$J(t) = \sum_{\sigma_1=0}^{\mu} L_{J\nabla T}(\sigma_1)\nabla T(t - \sigma_1)$$

$$+ \sum_{\sigma_1=0}^{\mu} \sum_{\sigma_2=0}^{\mu} L_{J\nabla T\nabla T}(\sigma_1, \sigma_2)\nabla T(t - \sigma_1)\nabla T(t - \sigma_2) \qquad (25)$$

The estimated response values  $L_{I\nabla T^n}(\sigma_1, \ldots, \sigma_n)$  characterize the heat flux in terms of the thermodynamic force acting. In this case the moment hierarchy is given by<sup>1,2</sup>

$$\left\langle \prod_{j=1}^{m} \nabla T(t - \tau_{j}) J(t) \right\rangle = \sum_{n=1}^{2} \frac{1}{n!} \sum_{\sigma_{1}=0}^{\mu}$$

$$\cdots \sum_{\sigma_{n}=0}^{\mu} L_{J \nabla T^{n}}(\sigma_{1}, \ldots, \sigma_{n})$$

$$\times \left\langle \prod_{j=1}^{m} \nabla T(t - \tau_{j}) \prod_{i=1}^{n} \nabla T(t - \sigma_{i}) \right\rangle$$
(26)

where this multivariate moment hierarchy is solved by standard matrix methods. The previous formulation is general and can be applied to a wide range of situations. Equation (26) is used later to analyze the thermal conduction process in a solid to indicate if conduction is a linear or a nonlinear process.

The truncated Volterra expansion has been operated on in order to obtain a linear algebraic expression that can be readily solved for the transport coefficients. The moment hierarchy can be written in the obvious form  $C = \underline{M}L$ , where  $\underline{M}$  is a square matrix whose elements are the automoments of the applied forces, C is a column vector whose elements are the cross moments between the thermodynamic flux and the applied forces, and L is a column vector whose elements are the kernel function values. Given the nature of the time-series data considered and the construction of the moment values used in the moment hierarchy, the rows of  $\underline{M}$  will be linearly independent of each other and the matrix will usually be nonsingular so that there is a unique solution for L.

### Nonlinear Analysis of the Thermal Conductivity Data

The thermal conductivity of each sample was determined using linear and mixed linear—nonlinear forms of the local constitutive representation. These estimated values of the response functions are then used to predict the future behavior of the heat flux at the surface of the sample. These predicted heat flux values are then compared with the actual observed values.

The uncertainties on the thermal conductivity values estimated using the convolution equations can be determined using

$$[J_{k}(t) \pm \Delta J_{k}(t)] = \sum_{n=1}^{N} \frac{1}{n!} \sum_{\sigma_{1}=0}^{\mu}$$

$$\cdots \sum_{\sigma_{n}=0}^{\mu} [L_{J_{k}\nabla T \cdots \nabla T}(\sigma_{1}, \dots, \sigma_{n})]$$

$$\pm \Delta L_{J_{k}\nabla T \cdots \nabla T}(\sigma_{1}, \dots, \sigma_{n})]$$

$$\times \left[ \prod_{j=1}^{n} \nabla T(t - \sigma_{j}) \pm \prod_{j=1}^{n} \Delta \nabla T(t - \sigma_{j}) \right]$$
(27)

Again, it is assumed that  $\Delta J_k \approx \text{const}$  and  $\Delta \nabla T_{i_1} \approx \text{const}$ ; and as the temperature gradient is approximately a constant in the present work, i.e.,  $\nabla T_{i_1}(t) \approx \langle \nabla T_{i_1}(t) \rangle$  and as<sup>1</sup>

$$egin{aligned} \left(rac{\partial J}{\partial 
abla T}
ight) &= \sum_{\sigma_1=0}^{\mu} L_{J
abla T}(\sigma_1) = heta_1 \ \\ \left(rac{\partial^2 J}{\partial 
abla T^2}
ight) &= \sum_{\sigma_1=0}^{\mu} \sum_{\sigma_2=0}^{\mu} L_{J
abla T
abla T}(\sigma_1, \sigma_2) = heta_2 \end{aligned}$$

Table 4 Linear and nonlinear transport coefficients under equilibrium conditions

|                                  | Linear analysis    | Nonlinear<br>analysis linear<br>coefficient | Nonlinear analysis quadratic coefficient |
|----------------------------------|--------------------|---------------------------------------------|------------------------------------------|
| Sample material                  | $\kappa_1$ , W/m K | $\theta_1$ , W/m K                          | $\theta_2$ , W/K <sup>2</sup>            |
| Stainless steel 1                | $12.20 \pm 0.36$   | $13.05 \pm 0.36$                            | $-0.0040 \pm 0.00014$                    |
| Stainless steel 2                | $12.20 \pm 0.36$   | $12.17 \pm 0.36$                            | $-0.031 \pm 0.001$                       |
| Glass 1                          | $0.827 \pm 0.025$  | $1.060 \pm 0.031$                           | $0.030 \pm 0.001$                        |
| Glass 2                          | $0.827 \pm 0.025$  | $1.060 \pm 0.031$                           | $0.030 \pm 0.001$                        |
| Glass fiber reinforced polyester | $0.191 \pm 0.006$  | $0.0952 \pm 0.006$                          | $0.00015 \pm 0.00005$                    |
| Glass fiber reinforced polyester | $0.190 \pm 0.006$  | $0.0954 \pm 0.006$                          | $0.00014 \pm 0.00005$                    |
| Cork                             | $0.050 \pm 0.0015$ | $0.100 \pm 0.032$                           | $-0.0042 \pm 0.0001$                     |
| Cork                             | $0.050 \pm 0.0015$ | $0.101 \pm 0.032$                           | $-0.0031 \pm 0.0001$                     |

then the uncertainty on the integral of the estimated response function values will be approximately equal to

$$\Delta\theta_1/\theta_1 \approx \sqrt{(\Delta J_k/J_k)^2 + (\Delta \nabla T/\nabla T)^2}$$
 (28)

$$\Delta\theta_2/\theta_2 \approx \sqrt{(\Delta J_k/J_k)^2 + (2\Delta\nabla T/\nabla T)^2}$$
 (29)

The values of the estimated thermal transport coefficients under equilibrium conditions are presented in Table 4.

The local constitutive representation is a polynomial convolution expansion and not a perturbation expansion. The magnitude of the linear and quadratic terms of the mixed linear-quadratic form can be compared by considering the products  $\theta_1 \langle \nabla T(t) \rangle$  and  $\theta_2 \langle \nabla T^2(t) \rangle$ . Using the transport coefficient values given in Table 4 together with the average temperature gradients it can be shown that the one-dimensional thermal conduction is weakly nonlinear in solid materials over a range of three orders of magnitude of thermal conductivity. The magnitude of the nonlinear component seems to increase as the value of thermal conductivity decreases. However, the edge-loss effects in the experimental design used in the present work become increasingly important as the thermal conductivity decreases. Thus, at present, no clear inferences can be made about this nor to the existence of any nonlinear mathematical relationship.

### **Conclusions**

In this work the thermal transport conductivity for a range of different materials has been determined using the local constitutive and directed graph network representations. Both representations were able to accurately characterize the observed behavior. However, the main objective of the present work is to determine which of the two representations provides physically meaningful and consistent transport coefficient values. The local constitutive representation gave consistent and accurate values for the materials examined. Although the directed graph network and the representation could pro-

duce accurate thermal transport coefficient values for some cases, it was shown not to be consistent.

The nature of one-dimensional thermal conduction was then considered. Linear and mixed linear and nonlinear local constitutive representations were used to characterize the conduction process in a range of sample materials. A weak nonlinearity was observed as the thermal conductivity decreased. However, this could be due to edge effects. Thus, at present, no clear inferences can be made about this nor to the existence of any nonlinear mathematical relationship.

#### Acknowledgments

This work was funded by the U.K. Science and Engineering Research Council.

#### References

<sup>1</sup>Irving, A. D., "Stochastic Sensitivity Analysis," *Applied Mathematical Modeling*, Vol. 16, Jan. 1992, pp. 3–15.

<sup>2</sup>Irving, A. D., Dewson, T., Hong, G., and Cunliffe, N., "Generalized Response of a Nonlinear System to Stochastic Sequences," *Applied Mathematical Modeling*, Vol. 19, Jan. 1995, pp. 46–55.

<sup>3</sup>Callen, H. B., *Thermodynamics*, Wiley, New York, 1960, pp. 288, 289.

<sup>4</sup>Irving, A. D., Clayton, B. R., and Dewson, T., "Nonlinear Thermoviscoelastic Behaviour," *IUTAM Symposium, Inhomogenity, Anisotropy and Nonlinearity in Solid Mechanics*, edited by D. Parker and A. England, Kluwer, The Netherlands, 1995.

<sup>5</sup>Gurtin, M. E., and Pipkin, A. C., "A General Theory of Heat Conduction with Finite Speed Waves," *Archive for Rational Mechanics and Analysis*, Vol. 31, 1968, p. 113.

<sup>6</sup>Peusner, L., "Network Thermostatics," *Journal of Chemical Physics*, Vol. 83, No. 3, 1985, pp. 1276–1291.

Peusner, L., "A Network Thermostatic Approach to Hill and King-Altman Reaction Diffusion Kinetics," *Journal of Chemical Physics*, Vol. 83, No. 11, 1985, pp. 5559-5566.

<sup>8</sup>Peusner, L., "Global Reaction: Diffusion Coupling and Reprocity in Linear Asymmetric Kinetic Networks," *Journal of Chemical Physics*, Vol. 77, No. 11, 1982, pp. 5500–5507.

<sup>9</sup>Peusner, L., Studies in Network Thermodynamics, Elsevier, Amsterdam, 1986.